[Clustered protocadherin family].

نویسندگان

  • Teruyoshi Hirayama
  • Sonoko Hasegawa
  • Takeshi Yagi
چکیده

The brain is a complex system composed of enormous numbers of differentiated neurons, and brain structure and function differs among vertebrates. To examine the molecular mechanisms underlying brain structure and function, it is important to identify the molecules involved in generating neural diversity and organization. The clustered protocadherin (Pcdh) family is the largest subgroup of the diverse cadherin superfamily. The clustered Pcdh proteins are predominantly expressed in the brain and their gene structures in vertebrates are diversified. In mammals, the clustered Pcdh family consists of three gene clusters: Pcdh-alpha, Pcdh-beta, and Pcdh-gamma. During brain development, this family is upregulated by neuronal differentiation, and Pcdh-alpha is then dramatically downregulated by myelination. Clustered Pcdh expression continues in the olfactory bulb, hippocampus, and cerebellum until adulthood. Structural analysis of the first cadherin domain of the Pcdh-alpha protein revealed it lacks the features that classical cadherins require for homophilic adhesiveness, but it contains Pcdh-specific loop structures. In Pcdh-alpha, an RGD motif on a specific loop structure binds beta1-integrin. For gene expression, the gene clusters are regulated by multiple promoters and alternative cis splicing. At the single-cell level, several dozen Pcdh-alpha and -gamma mRNA are regulated monoallelically, resulting in the combinatorial expression of distinct variable exons. The Pcdh-alpha and Pcdh-gamma proteins also form oligomers, further increasing the molecular diversity at the cell surface. Thus, the unique features of the clustered Pcdh family may provide the molecular basis for generating individual cellular diversity and the complex neural circuitry of the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protocadherin family: diversity, structure, and function.

Protocadherins are predominantly expressed in the nervous system, and constitute the largest subgroup within the cadherin superfamily. The recent structural elucidation of the amino-terminal cadherin domain in an archetypal protocadherin revealed unique and remarkable features: the lack of an interface for homophilic adhesiveness found in classical cadherins, and the presence of loop structures...

متن کامل

Regulation of protocadherin gene expression by multiple neuron-restrictive silencer elements scattered in the gene cluster

The clustered protocadherins are a subfamily of neuronal cell adhesion molecules that play an important role in development of the nervous systems in vertebrates. The clustered protocadherin genes exhibit complex expression patterns in the central nervous system. In this study, we have investigated the molecular mechanism underlying neuronal expression of protocadherin genes using the protocadh...

متن کامل

Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy

Non-clustered δ-protocadherins are homophilic cell adhesion molecules essential for the development of the vertebrate nervous system, as several are closely linked to neurodevelopmental disorders. Mutations in protocadherin-19 (PCDH19) result in a female-limited, infant-onset form of epilepsy (PCDH19-FE). Over 100 mutations in PCDH19 have been identified in patients with PCDH19-FE, about half o...

متن کامل

Functional Significance of Isoform Diversification in the Protocadherin Gamma Gene Cluster

The mammalian Protocadherin (Pcdh) alpha, beta, and gamma gene clusters encode a large family of cadherin-like transmembrane proteins that are differentially expressed in individual neurons. The 22 isoforms of the Pcdhg gene cluster are diversified into A-, B-, and C-types, and the C-type isoforms differ from all other clustered Pcdhs in sequence and expression. Here, we show that mice lacking ...

متن کامل

NF-Protocadherin Regulates Retinal Ganglion Cell Axon Behaviour in the Developing Visual System

Cell adhesion molecules play a central role in mediating axonal tract development within the nascent nervous system. NF-protocadherin (NFPC), a member of the non-clustered protocadherin family, has been shown to regulate retinal ganglion cell (RGC) axon and dendrite initiation, as well as influencing axonal navigation within the mid-optic tract. However, whether NFPC mediates RGC axonal behavio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme

دوره 53 4 Suppl  شماره 

صفحات  -

تاریخ انتشار 2008